Control of Nonlinear Chemical Processes Using Neural Models and Feedback Linearization

نویسندگان

  • H. A. B. te Braake
  • H. J. L. van Can
  • J. M. A. Scherpen
  • H. B. Verbruggen
چکیده

Black-box modeling techniques based on artificial neural networks are opening new horizons for modeling and controlling nonlinear processes in biotechnology and chemical process industries. The link between dynamic process models and actual process control is provided by the concept of model based control (MBC), e.g. Internal Model Control (IMC) or Model Based Predictive Control (MBPC). To avoid time consuming calculations, feedback linearization techniques can be used to linearize the nonlinear process model. The resulting linear model then can be used in a linear MBC scheme, allowing standard linear control techniques to be applied. Two methods of input/output feedback linearization are described in combination with the use of neural process models. The exact input/output feedback linearization and the approximate input/output feedback linearization. The proposed methods are applied to a MISO (multi-input single-output) laboratory scale pressure process, which shows good results compared to conventional linear techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Control of Nonlinear Multivariable Systems

This paper concerns a study on the optimal control for nonlinear systems. An appropriate alternative in order to alleviate the nonlinearity of a system is the exact linearization approach. In this fashion, the nonlinear system has been linearized using input-output feedback linearization (IOFL). Then, by utilizing the well developed optimal control theory of linear systems, the compensated ...

متن کامل

Real-Time Output Feedback Neurolinearization

 An adaptive input-output linearization method for general nonlinear systems is developed without using states of the system. Another key feature of this structure is the fact that, it does not need model of the system. In this scheme, neurolinearizer has few weights, so it is practical in adaptive situations.  Online training of neuroline...

متن کامل

Fault-Tolerant Control of a Nonlinear Process with Input Constraints

A Fault-Tolerant Control (FTC) methodology has been presented for nonlinear processes being imposed by control input constraints. The proposed methodology uses a combination of Feedback Linearization and Model Predictive Control (FLMPC) schemes. The resulting constraints in the transformed process will be dependent on the actual evolving states, making their incorporation in the de...

متن کامل

Adaptive Input-Output Linearization Control of pH Processes

pH control is a challenging problem due to its highly nonlinear nature. In this paper the performances of two different adaptive global linearizing controllers (GLC) are compared. Least squares technique has been used for identifying the titration curve. The first controller is a standard GLC based on material balances of each species. For implementation of this controller a nonlinear state...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997